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SUMMARY

A comparative study of the bi-linear and bi-quadratic quadrilateral elements and the quadratic triangular
element for solving incompressible viscous flows is presented. These elements make use of the stabilized
finite element formulation of the Galerkin/least-squares method to simulate the flows, with the pressure and
velocity fields interpolated with equal orders. The tangent matrices are explicitly derived and the Newton–
Raphson algorithm is employed to solve the resulting nonlinear equations. The numerical solutions of the
classical lid-driven cavity flow problem are obtained for Reynolds numbers between 1000 and 20 000 and
the accuracy and converging rate of the different elements are compared. The influence on the numerical
solution of the least square of incompressible condition is also studied. The numerical example shows
that the quadratic triangular element exhibits a better compromise between accuracy and converging rate
than the other two elements. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The finite element modeling of incompressible viscous flows can be traced back to the 1970s, with
the initial development focused on the simulation of viscous flows with low Reynolds numbers
[1–5]. Soon it became apparent that the standard Galerkin finite element method (FEM) formula-
tion, which was very successful in structural analysis, led to numerical instabilities and spurious
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oscillations when used to solve the incompressible Navier–Stokes equations. In most cases the
numerical instabilities are so severe that the solutions either do not converge or become meaning-
less. The incompressible condition, which makes the pressure field independent of the velocity,
has long been recognized as the main source of numerical instability that can appear at low and
high Reynolds number. The simplest way to eliminate this instability is to use mixed interpolations
(or unequal interpolations) for the velocity and pressure fields, which satisfy the Babuska–Brezzi
condition [6, 7] or pass the inf–sup test [8]. For example, for the quadrilateral finite element with
bi-quadratic velocity interpolation, a discontinuous linear interpolation or a continuous bi-linear
interpolation can be adopted for the pressure solution.

The source of spurious oscillations in the velocity solution is due to the standard Galerkin
FEM treatment of the convection term, in which the test and trial functions are similar. This
convective instability becomes dominant as the Reynolds number increases. Although this insta-
bility can simply be removed by keeping the mesh Reynolds number smaller than two so that
convection no longer dominates at an element level, this approach is not practical when simulating
complex flows. Initial attempts to eliminate the instability triggered by the convective term were
enlightened by the finite difference upwind schemes. The Petrov–Galerkin FEM formulation for
advection–diffusion equations, which weighs upwind nodes more heavily than downstream nodes,
was implemented by Christie et al. [9] for one-dimensional cases and by Heinrich et al. [10, 11]
for two-dimensional cases. However, this straightforward introduction upwind difference was crit-
icized for excessive crosswind diffusion and low accuracy, especially when the flow is skew to the
mesh [12].

A breakthrough in the FEM simulation of incompressible viscous flows was achieved by Brooks
and Hughes [13], who established a stabilized and higher-order accurate method based on elements
with bi-linear velocity and constant pressure interpolations. The formulation, commonly referred
to as the streamline upwind/Petrov–Galerkin (SUPG) formulation, relies on the addition of an arti-
ficial diffusion only along the flow direction on the perturbation of the derivatives of the Galerkin
weighting functions. Later, Hughes and co-workers introduced a Galerkin/least-squares (GLS)
method for Stokes flows [14] and for advection–diffusion equations [15], in which least-squares
forms of the residuals, discontinuous between elements, are added to the Galerkin formulation
to enhance its stability. The GLS method represents a conceptual simplification of the SUPG
method and provides a more systematic approach to remove instabilities in the simulation of
the incompressible Navier–Stokes equations. Using linear and bi-linear equal-order interpolations
for the velocity and pressure fields, Tezduyar et al. [16] derived an SUPG/PSPG (pressure-
stabilizing/Petrov–Galerkin) formulation for incompressible viscous flows from the GLS method
by neglecting the viscous term’s contribution to the weighting functions of the residuals. Soon
after that Franca and Frey [17] extended the GLS-stabilized FEM formulation to higher-order
interpolations, in which the least squares of both the Navier–Stokes equations and the incom-
pressible condition were taken into account. The GLS and SUPG/PSPG formulations circumvent
the Babuska–Brezzi condition and allow for any combination of interpolations for velocity and
pressure.

The stabilization parameters used in [17] came from the inverse estimate constants given by
Harari and Hughes [18]. Later, Franca and Madureria [19] proposed to calculate the stabiliza-
tion parameters by solving the eigenvalue problem associated with the inverse estimates, thereby
bypassing the cumbersome notion of element length. Hannani et al. [20] compared the GLS, SUPG
and standard Galerkin formulation with the lid-driven cavity problem under various Reynolds
numbers and concluded that GLS formulation was superior to its SUPG counterpart. As the least
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square of the incompressible constraint (LSIC) term was excluded from the GLS formulation
studied in [20], this formulation was later referred to as the semi-GLS formulation by Burda et al.
[21]. For the SUPG/PSPG formulation with LSIC term, Tezduyar and Osawa [22] calculated the
stabilization parameters from element matrices and vectors, which automatically accounted for the
local length scale, an advection field and the Reynolds number. Besides the SUPG, SUPG/PSPG
and GLS formulations, other stabilized FEM for incompressible Navier–Stokes equations have
also been proposed, including the third-order upwind FEM proposed by Norio et al. [23, 24].

The accuracy and convergence rate of three elements associated with the GLS formulations
are compared in this paper in the context of the classical problem of the lid-driven cavity flow
already considered by Hannani et al. [20] but for a wider range of the Reynolds number. The
paper also provides the derivation of the tangent matrices for the GLS FEM. The remainder
of the paper is organized as follows: in Section 2, we review the boundary value problem of
incompressible Navier–Stokes equations. The FEM relations associated with the GLS-stabilized
formulation are presented for two-dimensional cases in Section 3, which also describes how to
calculate the stabilization parameters and summarizes the Newton–Raphson iterative algorithm
adopted to solve the resulting system of nonlinear equations. Section 4 presents the results of the
classical lid-driven cavity flow problem with the Reynolds number up to 20 000. This problem is
used to assess and compare the accuracy and convergence performance of the various GLS finite
elements. The appendices contain a detailed derivation of the FE equations and the corresponding
tangent matrices in a form readily amenable to implementation, including the method of calculating
the global second-order derivatives of basis functions.

2. INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Let us consider an isothermal incompressible viscous flow in a spatial domain � with boundary �.
The governing Navier–Stokes equations are given by

�
�u
�t

+�u·∇u−∇ ·r=b in � (1)

∇ ·u=0 in � (2)

where � is the constant density, u is the velocity vector, b is the body force per unit volume and
r is the Cauchy stress tensor given by

r=−pI+2�e(u) (3)

Here p is the pressure, I is the second-order identity tensor, � is the dynamic viscosity and e(u)

is the strain-rate tensor defined as the symmetric part of the velocity gradient

e(u)= 1
2 [∇u+(∇u)T] (4)

Substituting (2)–(4) into (1) yields the following form of the Navier–Stokes equations:

�
�u
�t

+�u·∇u−�∇2u+∇ p=b in � (5)
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Along different segments of the boundary �, Dirichlet or Neumann boundary conditions can be
imposed as

u=g along �g (6)

r ·n= f along � f (7)

where �u and � f are complementary subsets of �, g and f are given functions and n is the outer
normal unit vector of � f . The formulation of the incompressible viscous problem is completed
by the initial condition on u,

u|t=0=u0 in � (8)

where u0 is a given function of position, which satisfies ∇ ·u0=0.

3. STABILIZED FEM FORMULATION

3.1. Stabilized GLS formulation

Let the computational domain � be discretized into a set of elements �e, e=1,2, . . . ,nel, where
nel is the number of elements, and let Shu and V h

u be the suitably defined finite-dimensional trial
solution and test function spaces for velocity, respectively. Let Shp and V h

p be their counterparts for
the pressure, with Shp =V h

p . According to Franca and Frey [17], the stabilized GLS finite element
formulation of (1) and (2) can be written as follows: find u∈ Shu and p∈ Shp such that, ∀�u∈V h

u

and ∀�p∈V h
p ,

∫
�

�u·
(

�
�u
�t

+�u·∇u−b
)
d�+

∫
�

�e :rd�−
∫

� f

�u· f d�+
∫

�
�p(∇ ·u)d�

+
nel∑
e=1

∫
�e

�

[
u·(∇�u)− �

�
∇2�u+ (∇�p)

�

]
·
[
�

(
�u
�t

+u·∇u
)

−�∇2u+∇ p−b
]
d�

+
nel∑
e=1

∫
�e

�LSIC�(∇ ·�u)(∇ ·u)d�=0 (9)

Here �u=0 along �g and �e is the strain-rate tensor corresponding to �u. The first three integrals
in (9) come from the standard Galerkin formulation, i.e. from the virtual velocity principle of (1),
while the fourth integral is the weighted residual of (2). The fifth and sixth terms, which involve
summations over element integrals, are the least-squares forms of (5) and (2), respectively, and
provide the GLS and LSIC stabilizing terms.

If �∇2�u/� is removed from the fifth term in (9), the GLS formulation reduces to the
SUPG/PSPG formulation proposed by Tezduyar and Osawa [22]. Thus, the dot products of the
residual of (5) with u·∇(�u) and ∇(�p), respectively, give the SUPG and PSPG stabilizing term.
As the kinematic viscosity is in most cases of the order of 10−3 or less, it is not surprising that
the GLS and SUPG/PSPG formulations yield very similar solutions.
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Three ways have been proposed to calculate the GLS stabilization parameter �. The first approach
[17] relies on the inverse estimate constants and provides the following form for �:

�= he
2‖u‖ min{Re,1} (10)

where he is the equivalent element length or element diameter and Re is the element Reynolds
number defined as

Re= mk�‖u‖he
4�

(11)

The parameters he and mk entering (10) and (11) depend on the element shapes and interpolation
order for the approximate velocity field. Harari and Hughes [18] calculated these parameters for
rectangular and triangular elements with different interpolation orders. Slightly modified expres-
sions are adopted here. For quadrilateral elements, he is defined as the usual element diameter, i.e.
it is related to the element area Ae through

he=2
√
Ae/� (12)

For bi-linear and bi-quadratic quadrilateral elements, mk is 1
3 and 11

135 , respectively. Note that the
definition of he adopted here is different from the more complex form proposed in [18] and can
be more easily extended to non-rectangular elements, especially when bi-quadratic interpolation is
employed. Furthermore our numerical experiments have shown that, for square elements, replacing
he given in [18] with (12) yields almost identical solutions. For quadratic triangular elements with
mid-nodes equally spaced along straight edges, he is given by

he=4Ae

/√
3

3∑
i=1

s2i (13)

where si is the distance from the i th vertex to the triangle’s centroid.
Franca and Madureria [19] later proposed a definition for � free of the element length as

�= 1√
�K ‖u‖ min

{ ‖u‖�
4
√

�K�
,1

}
(14)

where �K , given by Equation (35) in [19], is the largest eigenvalue of the generalized eigenvalue
problem associated with the inverse estimate for each element. This definition bypasses the difficulty
of defining he for different element types. However, in arbitrary Lagrangian–Eulerian formulations,
where the mesh of the fluid domain can deform during the analysis, computing �K for each element
at every load step tends to increase the computation time significantly.

With regards to the LSIC stabilization parameter �LSIC entering the last term of (9), both [17]
and [18] use the same expression:

�LSIC=�‖u‖2 (15)

In [22], Tezduyar and Osawa proposed a radically different way to compute these stabilization
parameters, in which neither the inverse estimates nor the associated eigenvalue problem are
needed. The parameters are instead computed based on the element-level matrices and vectors.
For more detailed information, please refer to [22].
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In the present study, which only involves two-dimensional meshes composed of quadrilateral
and triangular elements, we adopt relations (12), (13) and (15), which are appropriate as long as
the element aspect ratio is not too large.

3.2. FE formulation and the Newton–Raphson iteration

The derivation of the nonlinear FEM equations associated with Equation (9) relies on the following
two simplifications. First, only the two-dimensional case is considered here, although the formu-
lation presented hereafter can readily be extended to the fully three-dimensional case. Second, to
simplify the notations, we assume that the whole computational domain � is divided into only one
element; hence, summations over elements in Equation (9) vanish and the elemental equilibrium
equations have the same form as the global equilibrium equations.

Let U and P be the elemental vectors for velocity and pressure and �U and �P be their variational
forms, respectively. The symbol U̇ stands for the elemental local acceleration vector, namely,
�U/�t . Thus, u, �u/�t , �u, p and �p can be expressed as

u=NU,
�u
�t

=NU̇, �u=N�U (16)

p=HP, �p=H�P (17)

where N and H are the interpolation function matrices for velocity and pressure, respectively. As
mentioned above, equal-order interpolations for velocity and pressure can be employed in GLS
and SUPG/PSPG formulations.

Substituting Equations (16) and (17) into Equation (9), transferring the terms expressed in
the form of second-order tensors into the equivalent vector or matrix forms and considering the
arbitrariness of �U and �P lead to the following semi-discrete GLS-stabilized FEM formulation:

W=
∫

�
�NTNU̇d�+

∫
�

�NTLud�+
∫

�
BTTd�

+
∫

�
�WT(�NU̇+�Lu−�N̂TU+ĤP−b)d�+

∫
�

�LSIC�BTmmTBUd�−F

= 0 (18)

U=
∫

�
HTmTBUd�+

∫
�

�ĤT
[
NU̇+Lu− �

�
N̂U+ 1

�
ĤP− b

�

]
d�=0 (19)

In (18) and (19), W and U denote the imbalance forces corresponding to the momentum equations
and incompressible condition, respectively, while F is the nodal forces equivalent to the external
loads:

F=
∫

�
NTbd�+

∫
� f

NTfd� (20)

The various matrices entering (18) and (19), such as N̂ and Ĥ, are given in Appendix A, while
the method to calculate the second-order derivatives of the velocity shape functions with respect
to the global coordinates, to be used in (18) and (19) also, is described in Appendix B.
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To complete the discretization of the time-dependent equations (18) and (19), the implicit
backward Euler scheme is employed, with the local acceleration at time t+�t expressed as

U̇t+�t = Ut+�t −Ut

�t
= �Ut+�t

�t
(21)

where �t denotes a constant time increment. Substituting (21) into (18) and (19) yields the
imbalance forces Wt+�t and Ut+�t at time t+�t as

Wt+�t =
(∫

�
�NTNd�

)
�Ut+�t

�t
+

∫
�

�NTLt+�tut+�t d�+
∫

�
BTTt+�t d�

+
∫

�
�WT

t+�t

(
�N

�Ut+�t

�t
+�Lt+�tut+�t −�N̂TUt+�t +ĤPt+�t −bt+�t

)
d�

+
∫

�
�LSIC�BTmmTBUt+�t d�−Ft+�t (22)

Ut+�t =
∫

�
HTmTBUt+�t d�+

∫
�

�ĤT
(
N

�Ut+�t

�t
+Lt+�tut+�t

−�

�
N̂Ut+�t + 1

�
ĤPt+�t − bt+�t

�

)
d� (23)

To solve the resulting nonlinear equations (22) and (23), the Newton–Raphson method is used
at every time step, with the tangent matrices denoted as follows:

KUU
t+�t =

d̄Wt+�t

dUt+�t
, KU P

t+�t =
d̄Wt+�t

dPt+�t
, KPU

t+�t =
d̄Ut+�t

�Ut+�t
, KPP

t+�t =
d̄Ut+�t

dPt+�t
(24)

The overbar symbol in d̄Wt+�t and d̄Ut+�t denotes that contributions of d� and d�LSIC due to
dUt+�t entering the differentiation of Wt+�t and Ut+�t are neglected in our study. A detailed
derivation of these tangent matrices is provided in Appendix C. The Newton–Raphson iterative
scheme then takes the familiar form

(0)Ut+�t =Ut ,
(0)Pt+�t =Pt⎡

⎣(n)KUU
t+�t

(n)KU P
t+�t

(n)KPU
t+�t

(n)K PP
t+�t

⎤
⎦

⎡
⎣�(n+1)Ut+�t

�(n+1)Pt+�t

⎤
⎦=−

⎡
⎣(n)Wt+�t

(n)Ut+�t

⎤
⎦

(n+1)Ut+�t = (n)Ut+�t +�(n+1)Ut+�t

(n+1)Pt+�t = (n)Pt+�t +�(n+1)Pt+�t

(25)
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with the left superscript denoting the iteration number. The convergence criteria are written as

max(‖(n)Wt+�t‖,‖(n)Ut+�t‖)
max(‖(0)Wt+�t‖,‖(0)Ut+�t‖)�� (26)

where � is a small positive number, typically less than 10−4.
Neglecting the contribution ofWt+�t to the tangent matrix ofKUU

t+�t (the term of
∫
� �Qt+�tNd�

in Equation (C8)) does not affect the solution accuracy, but may have a great influence on the
convergence rate. This is especially the case for quadrilateral bi-linear and bi-quadratic elements,
but apparently much less for quadratic triangular elements.

Although the aforementioned iterative algorithm is derived for the simulation of unsteady flows,
it can readily be applied to steady problems as well by using one of two approaches. The first
one, referred to as time-dependent approach, consists in applying the loads in a ramped way to
the prescribed values over a few time steps and then keeping them constant. The steady-state
solution is obtained when the local acceleration U̇ tends to zero. The second, more efficient way,
referred to as the time-independent approach, consists in removing all temporal terms in Wt+�t ,
Ut+�t , KUU

t+�t and KPU
t+�t , and performing the iteration in (25) directly. In that case, the loads can

still be applied in a ramped way to enhance convergence, with t just denoting a fictitious loading
time.

Based on the formulation derived above, three 2-D elements with equal-order interpolation for
velocity and pressure have been implemented: a bi-quadratic quadrilateral element with 3×3 points
Gaussian quadrature scheme (denoted hereafter by QUAD1), a bi-linear quadrilateral element with
2×2 points Gaussian quadrature scheme (QUAD2), and a quadratic triangular element with a
seven-point Gaussian quadrature scheme (TRIA). These three elements have been implemented
using the object-oriented programming approach proposed in [25–27], with the SuperLU 3.0
library adopted to solve the large, sparse and non-symmetrical system of linear equations resulting
from (25).

4. NUMERICAL EXAMPLES

The lid-driven cavity flow problem is often used as a benchmark to test incompressible Navier–
Stokes flow solvers. The computational domain consists of a unit square with Dirichlet boundary
conditions prescribed along its four sides: a unit horizontal velocity along the upper side and zero
velocity along the other three sides. For this problem, the flow Reynolds number is simply defined
as the reciprocal of the kinetic viscosity.

Despite its geometrical simplicity, the simulation of the lid-driven cavity flow is challenging
because of the existence of recirculation regions in the corners of the cavity, in which the solution
changes rapidly, and for the singularities in the pressure field in the upper corners. For a brief
review on numerical studies of the lid-driven cavity, refer to [28, 29]. Using a finite difference
method in streamfunction and vorticity formulation, Erturk et al. [29] solved this problem for
Reynolds numbers up to 21 000 on a very fine (600×600) grid. In this section, their results are
used as benchmark for our numerical results.

For this steady flow problem, the iteration scheme (25) is carried out using the time-independent
approach with the number of load steps chosen by dividing the Reynolds number by 500. The
tolerance parameter � entering (26) is set to 10−8 at every load step, which corresponds to an
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absolute value of the residual of the governing equations of the order of 10−10 or less. The
simulations are performed for four values of the Reynolds number (1000, 5000, 10 000 and 20 000)
on four uniform meshes made of 20×20, 30×30, 40×40 and 80×80 QUAD1 elements. The
corresponding meshes with the same number of degrees of freedom (DOF) for QUAD2 and TRIA
elements are obtained by dividing each QUAD1 element into four QUAD2 elements along its
two central lines or two TRIA elements along one of its diagonal, respectively. For reference, the
80×80 mesh yields 25 921 nodes and 77 763 DOF.

Figure 1 presents the computed streamlines (left) and pressure contours (right) obtained with the
finest (80×80) mesh with TRIA elements for the four values of the Reynolds number. As expected,

Figure 1. Streamlines (left) and pressure contours (right) for cavity flow with Re=1000 (a), 5000 (b),
10 000 (c), and 20 000 (d) obtained on the 80×80 mesh with TRIA elements.
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Figure 1. Continued.

as Re increases, the amount of recirculation in the corner regions intensifies, with secondary
recirculations appearing at Re>10000. The pressures contours clearly show the influence of the
pressure singularities in the upper corners of the cavity. The ‘sharpening’ of the velocity gradients
is also visible in Figure 2, which presents the spatial variation of the horizontal and vertical
velocity components along the vertical and horizontal central lines, respectively, for the two extreme
values of the Reynolds number (Re=1000 and 20 000). As apparent in that figure, the three
element types capture very well the sharp variation of the velocity field in the vicinity of the cavity
boundaries, and, except for very small differences near the upper lid at high Reynolds numbers,
the numerical solutions compare very well with those obtained with a much finer discretization by

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:514–535
DOI: 10.1002/fld



524 Y. WEI AND P. H. GEUBELLE

Figure 2. Top: horizontal velocity profile along the vertical central line of the cavity. Bottom: vertical
velocity profile along the horizontal central line. Results obtained for Re=1000 and 20 000 on the 80×80

mesh. The symbols denote the benchmark solution obtained by Erturk et al. [29].

Erturk et al. [29]. Figure 3 presents spatial convergence study for TRIA element type corresponding
to Re=20000 obtained on three different meshes (20×20, 40×40, 80×80).

To quantify the accuracy of the numerical solutions, we adopt the approach proposed by Aydin
and Fenner [30] based on the continuity of the flow. As the net volumetric flow rate passing through
the vertical and horizontal central line of the cavity should be equal to zero, we define the flow
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Figure 3. Spatial convergence study: horizontal velocity profile along the vertical central line (top) and
vertical velocity profile along the horizontal central line (bottom) corresponding to Re=20000 obtained

for three meshes composed of TRIA elements.

rates

Q1=
∣∣∣∣∣
∫ 1

0
u dy

∣∣∣∣∣
/

QC , Q2=
∣∣∣∣∣
∫ 1

0
v dx

∣∣∣∣∣
/

QC (27)

where QC =1.5 is the horizontal rate corresponding to a linear velocity distribution along
the vertical direction. To integrate (27), the Simpson rule is employed for QUAD1 and TRIA
elements, and the trapezoidal rule for QUAD2 elements. The dependence of the computed values
of Q1 and Q2 on the Reynolds number, the mesh size and the element type is presented in
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Tables I–IV. The corresponding values obtained by Erturk et al. [29] are also listed for comparison.
As apparent from Tables I and II, even on the coarse 20×20 mesh, the computed volume flow
rates are very small, with the largest values of Q1 and Q2, obtained for the higher Reynolds
numbers, of the order of 10−4. As indicated in Tables III and IV, which correspond to the solutions
obtained with the 80×80 mesh, the accuracy of the numerical solution is substantially improved
by refining the computational mesh. A direct comparison between the results associated with the
different element types indicates that the QUAD1 element generally provides the most accurate
solutions.

However, as shown in Table V, which compares the CPU time per iteration for the three element
types and four mesh sizes, this additional precision comes at a cost, as the computational cost
per iteration is substantially higher for the QUAD1 element than for the other two element types.
This is due to the fact that the non-symmetric tangent matrix corresponding to that element is
more populated than for the other ones, thereby increasing the computational cost of the matrix
inversion. Furthermore, as illustrated in Figure 4, the QUAD1 element needs more iterations to
achieve the same level of precision as the TRIA and QUAD2 elements. For coarse meshes and
high Reynolds numbers, the QUAD1 solution does not converge, as indicated in Tables I and II.
As it usually converges faster than the other elements, involves relatively smaller computational
cost per iteration and provides the second best accuracy level, the TRIA element-type appears to
be the best comprise between accuracy and the ‘convergence speed’.

While the introduction of LSIC was described in [21] as ‘disastrous’, where Taylor–Hood
elements of P2P1 or Q2P1 that satisfy the Babuska–Brezzi condition, we do not reach the same
conclusion in the present study as the introduction of the LSIC term leads to slightly more
accurate solutions (Table VI) without much effect on the convergence rate (Figure 5). While the
relatively small impact of that term on the solution might justify its removal, further studies have
shown that doing so often leads to divergence of the numerical solution on coarser meshes. For
example, when using the TRIA element without the LSIC term to simulate the cavity flow with
the Reynolds number 20 000 on a 20×20mesh, no convergence is achieved, while a convergent

Table I. Volumetric flow rate Q1 along vertical central line, mesh 20×20.

Reynolds number TRIA QUAD1 QUAD2 Erturk et al. [29] (600×600grid)

1000 26.1×10−6 20.4×10−6 342×10−6 0.045×10−6

5000 56.3×10−6 2.83×10−6 258×10−6 0.067×10−6

10 000 38.9×10−6 119×10−6 172×10−6 0.114×10−6

20 000 93.8×10−6 NA 17.6×10−6 0.557×10−6

Table II. Volumetric flow rate Q2 along horizontal central line, mesh 20×20.

Reynolds number TRIA QUAD1 QUAD2 Erturk et al. [29] (600×600grid)

1000 16.2×10−6 7.14×10−6 113×10−6 0.134×10−6

5000 279×10−6 432×10−6 539×10−6 0.693×10−6

10 000 514×10−6 808×10−6 533×10−6 1.34×10−6

20 000 698×10−6 NA 473×10−6 2.35×10−6
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Table III. Volumetric flow rate Q1 along vertical central line, mesh 80×80.

Reynolds number TRIA QUAD1 QUAD2 Erturk et al. [29] (600×600grid)

1000 0.0988×10−6 0.0160×10−6 26.2×10−6 0.045×10−6

5000 1.03×10−6 0.373×10−6 46.0×10−6 0.067×10−6

10 000 1.30×10−6 0.373×10−6 43.7×10−6 0.114×10−6

20 000 3.07×10−6 1.14×10−6 43.0×10−6 0.557×10−6

Table IV. Volumetric flow rate Q2 along horizontal central line, mesh 80×80.

Reynolds number TRIA QUAD1 QUAD2 Erturk et al. [29] (600×600grid)

1000 0.137×10−6 0.0431×10−6 3.17×10−6 0.134×10−6

5000 0.395×10−6 0.00319×10−6 20.3×10−6 0.693×10−6

10 000 0.731×10−6 0.712×10−6 36.4×10−6 1.34×10−6

20 000 1.36×10−6 0.0865×10−6 46.8×10−6 2.35×10−6

Table V. CPU time in seconds per iteration on different meshes.

Mesh TRIA QUAD1 QUAD2

20×20 1.15 2.26 0.982
30×30 3.78 6.77 3.26
40×40 8.62 14.3 8.60
80×80 85.6 109 77.6

Figure 4. Iteration history for cavity flow with Re=20000 and 80×80 mesh.
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Table VI. Effect of an LSIC term on net volumetric flow rate check with TRIA elements.

Q1 Q2

Reynolds number Mesh With LSIC Without LSIC With LSIC Without LSIC

1000 20×20 26.1×10−6 27.2×10−6 16.2×10−6 45.3×10−6

5000 30×30 28.2×10−6 43.5×10−6 41.1×10−6 99.8×10−6

10 000 40×40 18.8×10−6 31.9×10−6 35.7×10−6 124×10−6

20 000 80×80 3.07×10−6 5.53×10−6 1.36×10−6 11.2×10−6

Figure 5. Iteration history for cavity flow solution with and without LSIC (Re=20000,
TRIA elements, 80×80 mesh).

solution, albeit not very precise, can be obtained when the LSIC term is kept. Similar observations
have been reached for simulations with QUAD1 and QUAD2 element for the Re=10000 case on
the 20×20mesh. It appears therefore preferable to keep the LSIC term.

5. CONCLUSION

This paper has summarized the Galerkin/least-squares-stabilized finite element methods for fluid
flow problems described by the incompressible Navier–Stokes equations. It also provided the
expression of all tangent matrices and residual vectors needed for the Newton–Raphson solution
of these equations. Three elements employing equal-order interpolation for velocity and pressure
have been tested with the aid of the classical lid-driven cavity flow problem with Reynolds numbers
ranging from 1000 to 20 000 solved on various meshes. The accuracy, assessed through the net
volumetric flow rate check, and the speed of convergence associated with these three elements
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have been compared. This comparative study has shown that the triangular quadratic element
provides an accuracy similar to that of the quadrilateral bi-quadratic element, but is much less
computationally intensive in terms of CPU time per iteration and the number of iteration for
convergence. When fine meshes are employed, removing the LSIC term reduces the number of
iterations with little accuracy loss, but keeping that term alleviates convergence problems on coarse
meshes.

APPENDIX A

When equal-order interpolations for velocity and pressure are adopted, the interpolation matrices
N and H take the form

N=[N1I . . . NnenI] (A1)

H=[N1 . . . Nnen] (A2)

where I is the identity matrix, Ni denotes the interpolation basis function or shape function
associated with the i th node and nen is the number of nodes in an element (nen=4, 9 and 6 for
the QUAD1, QUAD2 and TRIA elements, respectively).

To obtain the FE formulation (18) and (19), the various vector and tensor terms appearing in
(9) are expressed the equivalent vector or matrix forms with the aid of (16), (17), (A1) and (A2):

u·∇u=

⎡
⎢⎢⎢⎣

�u1
�x1

�u1
�x2

�u2
�x1

�u2
�x2

⎤
⎥⎥⎥⎦

[
u1

u2

]
=Lu=LNU (A3)

u·(∇�u) =

⎡
⎢⎢⎢⎣

��u1
�x1

��u1
�x2

��u2
�x1

��u2
�x2

⎤
⎥⎥⎥⎦

[
u1

u2

]
=(�L)u=

⎡
⎢⎢⎢⎣
u1

��u1
�x1

+u2
��u1
�x2

u1
��u2
�x1

+u2
��u2
�x2

⎤
⎥⎥⎥⎦

=
[
u·∇N1 0 . . . u·∇Nnen 0

0 u·∇N1 . . . 0 u·∇Nnen

]
�U

=G�U (A4)

∇2�u=
[∇2N1 0 . . . ∇2Nnen 0

0 ∇2N1 . . . 0 ∇2Nnen

]
�U= N̂�U (A5)

∇ p=

⎡
⎢⎢⎢⎣

�N1

�x1
. . .

�Nnen

�x1
�N1

�x2
. . .

�Nnen

�x2

⎤
⎥⎥⎥⎦P=ĤP (A6)
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(∇ ·�u)(∇ ·u)=�UTBTmmTBU (A7)

�e :r=�UTBTT (A8)

�p(∇ ·u)=�PTHTmTB (A9)

In (A7)–(A9), m=[1 1 0]T, the matrix B relates the strain-rate vector to the elemental velocity
vector,

B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�N1

�x1
0 . . .

�Nnen

�x1
0

0
�N1

�x2
. . . 0

�Nnen

�x2
�N1

�x2

�N1

�x1
. . .

�Nnen

�x2

�Nnen

�x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A10)

and T is the vector form of the Cauchy stress tensor defined as

T=[	11 	22 	12]T (A11)

To simplify the notation, let us define the matrix W as

W=G− �

�
N̂ (A12)

If the SUPG/PSPG formulation is used, W takes a different form:

W=G (A13)

Extending (18) and (19) to the 3-D case is readily achieved by modifying some of the matrices
appearing in these relations, such as L and G, to the suitable forms, and by adopting the 3-D
definition of the stabilization parameter �.

APPENDIX B

As apparent from (9), the discretization of the GLS and SUPG/PSPG formulations involves the
calculation of the second derivatives of the approximate velocity field with respect to the global
coordinates. However, since the associated shape functions are usually expressed in the explicit
form of the local coordinates, calculating their global second derivatives with respect to the global
coordinates is not straightforward. This appendix summarizes the key relations needed to compute
these derivatives for an isoparametric formulation, a step seldom included in GLS and SUPG/PSPG
papers.

We start from the isoparametric mapping

x1= x1(
,�)=
nne∑
i=1

xi1Ni (
,�), x2= x2(
,�)=
nne∑
i=1

xi2Ni (
,�) (B1)

where xi1 and xi2 are global coordinates of the i th node in an element, and 
 and � are the local
coordinates for quadrilateral elements or the independent area coordinates for triangular elements.
Provided the inverse transformation of (B1) exists, Ni can also be written as implicit functions of
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x1 and x2:

Ni (
,�)=Ni (x1(
,�), x2(
,�)) (B2)

Differentiating (B2) twice with respect to 
 and � and applying the chain rule yield the following
relationship between the second-order derivatives of Ni with respect to the local and global
coordinates:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�x1
�


)2 (
�x2
�


)2

2
�x1
�


�x2
�
(

�x1
��

)2 (
�x2
��

)2

2
�x1
��

�x2
��

�x1
�


�x1
��

�x2
�


�x2
��

�x1
�


�x2
��

+ �x1
��

�x2
�


⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2Ni

�x21

�2Ni

�x22

�2Ni

�x1�x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2Ni

�
2
−�Ni

�x1

�2x1
�
2

−�Ni

�x2

�2x2
�
2

�2Ni

��2
−�Ni

�x1

�2x1
��2

−�Ni

�x2

�2x2
��2

�2Ni

�
��
−�Ni

�x1

�2x1
�
��

−�Ni

�x2

�2x2
�
��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B3)

In (B3), terms such as �xi/�
 and �2xi/�
2 are directly computed from the mapping relations
(B2), while the first-order derivatives with respect to the global coordinates, �Ni/�x1 and �Ni/�x2,
are obtained through the familiar equation⎡

⎢⎢⎢⎣
�x1
�


�x2
�


�x1
��

�x2
��

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�Ni

�x1
�Ni

�x2

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

�Ni

�


�Ni

��

⎤
⎥⎥⎥⎦ (B4)

As apparent from relation (B3), one can readily verify that, for bi-linear elements, �2N 2
i /�x2j

vanishes only when the element shape remains rectangular.

APPENDIX C

To solve nonlinear equations (22) and (23), the Newton–Raphson method is used at every time
step. We thus need to compute the tangent matrices of Wt+�t and Ut+�t with respect to dUt+�t
and dPt+�t . Although both � and �LSIC are relevant to the latest value of Ut+�t , their contributions
to the tangent matrices are neglected in our study. Differentiating (22) and (23) yields

d̄Wt+�t = 1

�t

(∫
�

�NTNd�

)
dUt+�t +

∫
�

�NT d
(
Lt+�tut+�t

)
d�+

∫
�
BT dTt+�t d�

+ 1

�t

(∫
�

��WTNd�

)
dUt+�t +

∫
�

��WT d(Lt+�tut+�t )d�

−
(∫

�
��WTN̂d�

)
dUt+�t +

(∫
�

�WTĤd�

)
dPt+�t

+
∫

�
�(dWT

t+�t )Rt+�t d�+
(∫

�
�LSIC�BTmmTBd�

)
dUt+�t (C1)
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d̄Ut+�t =
(∫

�
HTmTBd�

)
dUt+�t + 1

�t

(∫
�

�ĤTNd�

)
dUt+�t +

∫
�

�ĤTd(Lt+�tut+�t )d�

−
(∫

�

��

�
ĤTN̂d�

)
dUt+�t +

(∫
�

�

�
ĤTĤd�

)
dPt+�t (C2)

The overbar in d̄Wt+�t and d̄Ut+�t means that only partial increments due to dUt+�t and dPt+�t
have been taken into account. The term Rt+�t in (C1) is defined as the discretized form of the
residual of Equation (5):

Rt+�t =
[
R1
t+�t

R2
t+�t

]
=�

�ut+�t

�t
+�ut+�t ·∇ut+�t −�∇2ut+�t +∇ pt+�t −bt+�t

= �N
�Ut+�t

�t
+�Lt+�tut+�t −�N̂TUt+�t +ĤPt+�t −bt+�t (C3)

To obtain the corresponding tangent matrices, terms of d(Lt+�tut+�t ), BTdTt+�t and (dWT
t+�t )

Rt+�t in Equations (C1) should be further expressed as the explicit form of dUt+�t and dPt+�t .
Noticing the relationship (A4), we have

d(Lt+�tut+�t )=d(Lt+�t )ut+�t +Lt+�td(ut+�t )=(Gt+�t +Lt+�tN)dUt+�t (C4)

while the constitutive relation (3) leads to

BTdTt+�t =−BTmHdPt+�t +BTCBdUt+�t (C5)

where C is the constitutive matrix defined in the 2-D case as

C=
⎡
⎢⎣
2� 0 0

0 2� 0

0 0 �

⎤
⎥⎦ (C6)

Whichever form (A12) or (A13) the quantity W takes, the product (dWT
t+�t )Rt+�t can be

expanded as

(dWT
t+�t )Rt+�t =

⎡
⎢⎢⎢⎢⎢⎢⎣

dut+�t ·∇N1 0

0 dut+�t ·∇N1

...
...

dut+�t ·∇Nnen 0

0 dut+�t ·∇Nnen

⎤
⎥⎥⎥⎥⎥⎥⎦

[
R1
t+�t

R2
t+�t

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R1
t+�t (dut+�t ·∇N1)

R2
t+�t (dut+�t ·∇N1)

...

R1
t+�t (dut+�t ·∇Nnen)

R2
t+�t (dut+�t ·∇Nnen)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1
t+�t

�N1

�x1
R1
t+�t

�N1

�x2

R2
t+�t

�N1

�x1
R2
t+�t

�N1

�x2
...

...

R1
t+�t

�Nnen

�x1
R1
t+�t

�Nnen

�x2

R2
t+�t

�Nnen

�x1
R2
t+�t

�Nnen

�x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

NdUt+�t =Qt+�tNdUt+�t (C7)

Substituting (C4)–(C7) into (C1) and (C2) leads to the following form of the tangent matrices:

KUU
t+�t = d̄Wt+�t

dUt+�t

= 1

�t

∫
�

�(NT+�WT
t+�t )Nd�+

∫
�

�NT(Gt+�t +Lt+�tN)d�+
∫

�
BTCBd�

+
∫

�
�WT

t+�t (�Gt+�t +�Lt+�tN−�N̂)d�+
∫

�
�Qt+�tNd�

+
∫

�
�LSIC�BTmmTBd� (C8)

KU P
t+�t =

d̄Wt+�t

dPt+�t
=−

∫
�
BTmHd�+

∫
�

�WT
t+�t Ĥd� (C9)

KPU
t+�t = d̄Ut+�t

�Ut+�t

=
∫

�
HTmTBd�+ 1

�t

∫
�

�ĤTNd�+
∫

�
�ĤT

(
Gt+�t +Lt+�tN− �

�
N̂

)
d� (C10)

KPP
t+�t =

d̄Ut+�t

dPt+�t
=

∫
�

�

�
ĤTĤd� (C11)
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